Trust 4.0: Dataflow-based Trust Modelling and Analysis in Industry 4.0 Systems

Spiros Alexakis (CAS Software AG), Stephan Seifermann (Karlsruhe Institute of Technology)
Fachgruppentreffen GI Architekturen 2019
Trust in Industry 4.0

Supply chains in Industry 4.0 are distributed and complex
- Many participants acting in various roles
- Many information exchanged between participants
- Information exchange vital for production

Trust required between participants
- No confidential information must be shared
- Participants only allowed to see necessary information

Situations might change rapidly
- Information sharing depending on geographical location
- Information sharing required by exceptional events

Introduction ➤ Running Example ➤ Modeling and Analyses ➤ Runtime Enforcement ➤ Conclusion
Project Trust 4.0

KIT
- Architectural Data Flow Modeling and Analysis

CUNI
- Runtime Access Control Modeling and Analysis

CAS
- Requirements
- Privacy-aware decision making

IMA
- Requirements
- Privacy-aware sensor gateway

Running Example

Introduction ➤ Running Example ➤ Modeling and Analyses ➤ Runtime Enforcement ➤ Conclusion
Running Example

Concepts

- **Employee’s Homes**
- **Factory Waiting Area**
- **Factory Workplace**

Running Example

Factory Workplace

<table>
<thead>
<tr>
<th>Shift</th>
<th>Start</th>
<th>End</th>
<th>Supervisor</th>
<th>Workers</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROD13</td>
<td>09:00</td>
<td>17:00</td>
<td>Susan</td>
<td>Werner, Winfried</td>
</tr>
</tbody>
</table>

20 min before

5 min before

Introduction ➔ **Running Example** ➔ **Modeling and Analyses** ➔ **Runtime Enforcement** ➔ **Conclusion**
Running Example

Scenario

<table>
<thead>
<tr>
<th>Shift</th>
<th>Start</th>
<th>End</th>
<th>Supervisor</th>
<th>Workers</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROD13</td>
<td>09:00</td>
<td>17:00</td>
<td>Susan</td>
<td>Werner, Winfried</td>
</tr>
</tbody>
</table>

Employee’s Homes Factory Waiting Area Factory Workplace

Running Example

Runtime Enforcement

Conclusion
Running Example

Scenario

<table>
<thead>
<tr>
<th>Employee’s Homes</th>
<th>Factory Waiting Area</th>
<th>Factory Workplace</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Shifts

<table>
<thead>
<tr>
<th>Shift</th>
<th>Start</th>
<th>End</th>
<th>Supervisor</th>
<th>Workers</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROD13</td>
<td>09:00</td>
<td>17:00</td>
<td>Susan</td>
<td>Werner, Winfried</td>
</tr>
</tbody>
</table>

Introduction

- Trust 4.0: Dataflow-based Trust Modelling and Analysis in Industry 4.0 Systems
 - Spiros Alexakis, Stephan Seifermann

Running Example

Modeling and Analyses

Runtime Enforcement

Conclusion

Software Design and Quality Group

Institute for Program Structures and Data Organization
Running Example

Scenario

<table>
<thead>
<tr>
<th>Employee’s Homes</th>
<th>Factory Waiting Area</th>
<th>Factory Workplace</th>
</tr>
</thead>
</table>

Shift	**Start**	**End**	**Supervisor**	**Workers**
PROD13 | 09:00 | 17:00 | Susan | Werner Winfried

Contact him
Running Example

Scenario

| Employee’s Homes | Factory Waiting Area | Factory Workplace |

<table>
<thead>
<tr>
<th>Shift</th>
<th>Start</th>
<th>End</th>
<th>Supervisor</th>
<th>Workers</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROD13</td>
<td>09:00</td>
<td>17:00</td>
<td>Susan</td>
<td>Werner Winfried</td>
</tr>
</tbody>
</table>

Introduction ➤ Running Example ➤ Modeling and Analyses ➤ Runtime Enforcement ➤ Conclusion
Running Example

Scenario

<table>
<thead>
<tr>
<th>Location</th>
<th>Shift</th>
<th>Start</th>
<th>End</th>
<th>Supervisor</th>
<th>Workers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Employee’s Homes</td>
<td>PROD13</td>
<td>09:00</td>
<td>17:00</td>
<td>Susan</td>
<td>Werner</td>
</tr>
<tr>
<td>Factory Waiting Area</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Winfried</td>
</tr>
<tr>
<td>Factory Workplace</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Factory Office</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Runtime Enforcement

Conclusion
Running Example
Security Constraints

Assets
- Locations in factory
- Data about workers

Physical Constraints
- Only workers assigned to shift can access factory 25 min before shift
- Only workers assigned to shift can access workplace 8 min before shift

Virtual Constraints
- Supervisor cannot access personal data of workers
- Supervisor cannot access sensitive personal data of late workers
Trust 4.0 Approach
Overview

Introduction | Running Example | Modeling and Analyses | Runtime Enforcement | Conclusion

14.06.2019
Trust 4.0: Dataflow-based Trust Modelling and Analysis in Industry 4.0 Systems
Spiros Alexakis, Stephan Seifermann

Software Architect

Data Flow Analysis

Sensitivity of Data

Decision Making

Dynamic Policies

Solver

Static Policies

Industry 4.0 System

Context Information

Industry 4.0 Sensors

Software Architecture

Modeling and Analyses
Data Flow Analysis
Overview

Analysis Goals

Architecture → Extended Architecture → Analysis Model → Logic Program → Results

PCM Instance → Data-Centric PCM Instance → Operations Model → Prolog Program → Query Result

Introduction → Running Example → Modeling and Analyses → Runtime Enforcement → Conclusion
Data Flow Analysis
Modeling and Analysis

Worker

WorkerLocation

WorkerLocations

privacy = min(input.privacy, OFFICIAL)

project

: WorkerLocation

privacy = SENSITIVE

filter

WorkerLocation[]

Location

calcDist

WorkerLocation

Distance

privacy = SENSITIVE

input

project

: WorkerLocation

privacy = OFFICIAL

filter

WorkerId

WorkerId

的距离

Workplaces

privacy = OFFICIAL

Distance

privacy = OFFICIAL

Workplaces

Location

Distance

privacy = min(input.privacy, OFFICIAL)

Introduction ➸ Running Example ➸ Modeling and Analyses ➸ Runtime Enforcement ➸ Conclusion
Data Flow Analysis

Results

<table>
<thead>
<tr>
<th>DataId</th>
<th>DataType</th>
<th>PrivacyLevel</th>
<th>EntryPoint</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>WorkerLocation</td>
<td>SENSITIVE</td>
<td>Worker UC1</td>
</tr>
<tr>
<td>1</td>
<td>WorkerId</td>
<td>NONE</td>
<td>Supervisor UC2</td>
</tr>
<tr>
<td>2</td>
<td>WorkerLocation</td>
<td>SENSITIVE</td>
<td>Supervisor UC2</td>
</tr>
<tr>
<td>3</td>
<td>Location</td>
<td>SENSITIVE</td>
<td>Supervisor UC2</td>
</tr>
<tr>
<td>4</td>
<td>Distance</td>
<td>OFFICIAL</td>
<td>Supervisor UC2</td>
</tr>
</tbody>
</table>

...
Dynamic Policies
Overview

Introduction ➔ Running Example ➔ **Modeling and Analyses** ➔ Runtime Enforcement ➔ Conclusion

- **Entities**
 - Privacy Levels
 - **Ensembles**
 - Definition
 - Optimized
 - Instantiation
 - Ensembles
 - Instances
 - Rule
 - Filtering
 - Applicable
 - Rules

Dynamic Policies Overview

Overview

Introduction

Running Example

Modeling and Analyses

Runtime Enforcement

Conclusion

Entities ➔ Privacy Levels ➔ Ensembles ➔ Optimized ➔ Instantiation ➔ Ensembles ➔ Instances ➔ Rule ➔ Filtering ➔ Applicable ➔ Rules
Decision Making

- **Grants**

 allow(shift.foreman, "read.personalData.phoneNo", workersThatAreLate)
 allow(shift.foreman, "read.distanceToWorkPlace", workersThatAreLate)

- **Constraints**

 deny(shift.foreman, "read.personalData", workers, PrivacyLevel.ANY)
 deny(shift.foreman, "read.personalData", workersPotentiallyLate, PrivacyLevel.SENSITIVE)

- **Privacy Levels**

 - Distance to work place, and phone number are official
 - Remaining personal data of worker (e.g. date of birth) is private

Introduction
Running Example
Modeling and Analyses
Runtime Enforcement
Conclusion
Trust 4.0-enabled enforcement architecture

Introduction ➔ Running Example ➔ Modeling and Analyses ➔ Runtime Enforcement ➔ Conclusion

14.06.2019 Trust 4.0: Dataflow-based Trust Modelling and Analysis in Industry 4.0 Systems
Spiros Alexakis, Stephan Seifermann

Software Design and Quality Group
Institute for Program Structures and Data Organization

Trust 4.0

- enabled enforcement architecture

Running Example

Modeling and Analyses

Conclusion

Runtime Enforcement

Introduction

WeShare

Trust 4.0 Models

TACM 4.0

CAS Open instance

IoT platform

CAS SmartAia

IMA Sensors

Factory

MQTT OPC-UA

WeSpaces

CAS OpenSync

Open synchronisation

IMA

Enerchart

WeShare

Trust 4.0 Models

TACM 4.0

CAS Open instance

IoT platform

CAS SmartAia

IMA Sensors

Factory

MQTT OPC-UA
WeShare for supply chains

Introduction ➔ Running Example ➔ Modeling and Analyses ➔ Runtime Enforcement ➔ Conclusion
Privacy-oriented IoT data transfer (internal view)
Privacy-oriented IoT data transfer (restricted view)
Enerchart Charts based on restricted view

Introduction Running Example Modeling and Analyses Runtime Enforcement Conclusion
Incorporating trust in Industry 4.0 is challenging
- Rapid changes require reactions
- Complex communication patterns make policies complex

Trust 4.0 supports aspect of access control
- Define bottom line security policies
- Define runtime policies considering context
- Evaluate policies on context changes

Future Work
- Evaluation in industrial context
- Consideration of unforeseen context changes
Introduction: Factory, user with Shield, sync

Running Example: Lock (open/closed)

Dynamic Policies: Sync

Conclusion: Factory, shield, fast forward
Image References
Approach Overview

- Icons made by Freepik (https://www.freepik.com) from Flaticon (https://www.flaticon.com) are licensed by CC 3.0 BY
 - Compasses, Speedometer, Numbering Icons

- Icons made by Dave Gandy (https://www.flaticon.com/authors/dave-gandy) from Flaticon (https://www.flaticon.com) are licensed by CC 3.0 BY
 - Cog Wheels Icon

- Icons made by Icongeek26 (https://www.flaticon.com/authors/icongeek26 from Flaticon (https://www.flaticon.com) are licensed by CC 3.0 BY
 - Clipboard Icons